Methane in plumes of Saturn’s moon Enceladus: Possible signs of life?

Summer begins this June 21 and will be accompanied by Jupiter, Saturn and the full moon.

Known geochemical processes cannot explain the levels of methane measured by the Cassini spacecraft on Saturn’s icy moon. While researchers say there is no suggestion that life exists on Enceladus, if there was it would be consistent with microbial activity similar to that known to occur at hydrothermal vents in Earth’s oceans.

An unknown methane-producing process is likely at work in the hidden ocean beneath the icy shell of Saturn’s moon Enceladus, suggests a new study published in Nature Astronomy by scientists at the University of Arizona and Paris Sciences & Lettres University.

Giant water plumes erupting from Enceladus have long fascinated scientists and the public alike, inspiring research and speculation about the vast ocean that is believed to be sandwiched between the moon’s rocky core and its icy shell. Flying through the plumes and sampling their chemical makeup, the Cassini spacecraft detected a relatively high concentration of certain molecules associated with hydrothermal vents on the bottom of Earth’s oceans, specifically dihydrogen, methane and carbon dioxide. The amount of methane found in the plumes was particularly unexpected.


“We wanted to know: Could earth like microbes that ‘eat’ the dihydrogen and produce methane explain the surprisingly large amount of methane detected by Cassini?” said Regis Ferriere, an associate professor in the University of Arizona Department of Ecology and Evolutionary Biology. “Searching for such microbes, known as methanogens, at Enceladus’ seafloor would require extremely challenging deep-dive missions that are not in sight for several decades.”

Ferriere and his team took a different, easier route. They constructed mathematical models to calculate the probability that different processes, including biological methanogenesis, might explain the Cassini data.

The authors applied new mathematical models that combine geochemistry and microbial ecology to analyse Cassini plume data and model the possible processes that would best explain the observations. They conclude that Cassini’s data are consistent either with microbial hydrothermal vent activity, or with processes that don’t involve life forms but are different from the ones known to occur on Earth.

On Earth, hydrothermal activity occurs when cold seawater seeps into the ocean floor, circulates through the underlying rock and passes close by a heat source, such as a magma chamber, before spewing out into the water again through hydrothermal vents. On Earth, methane can be produced through hydrothermal activity, but at a slow rate. Most of the production is due to microorganisms that harness the chemical disequilibrium of hydrothermally produced dihydrogen as a source of energy, and produce methane from carbon dioxide in a process called methanogenesis.

The team looked at Enceladus’ plume composition as the end result of several chemical and physical processes taking place in the moon’s interior. First, the researchers assessed what hydrothermal production of dihydrogen would best fit Cassini’s observations, and whether this production could provide enough “food” to sustain a population of Earth like hydrogenotrophic methanogens. To do that, they developed a model for the population dynamics of a hypothetical hydrogenotrophic methanogen, whose thermal and energetic niche was modelled after known strains from Earth.

The authors then ran the model to see whether a given set of chemical conditions, such as the dihydrogen concentration in the hydrothermal fluid, and temperature would provide a suitable environment for these microbes to grow. They also looked at what effect a hypothetical microbe population would have on its environment — for example, on the escape rates of dihydrogen and methane in the plume.

“In summary, not only could we evaluate whether Cassini’s observations are compatible with an environment habitable for life, but we could also make quantitative predictions about observations to be expected, should methanogenesis actually occur at Enceladus’ seafloor,” Ferriere explained.

The results suggest that even the highest possible estimate of abiotic methane production — or methane production without biological aid — based on known hydrothermal chemistry is far from sufficient to explain the methane concentration measured in the plumes. Adding biological methanogenesis to the mix, however, could produce enough methane to match Cassini’s observations.

“Obviously, we are not concluding that life exists in Enceladus’ ocean,” Ferriere said. “Rather, we wanted to understand how likely it would be that Enceladus’ hydrothermal vents could be habitable to Earthlike microorganisms. Very likely, the Cassini data tell us, according to our models.

“And biological methanogenesis appears to be compatible with the data. In other words, we can’t discard the ‘life hypothesis’ as highly improbable. To reject the life hypothesis, we need more data from future missions,” he added.

Thank you for reading, and don’t forget to check The Euro Weekly News for all your up-to-date local and international news stories.

Deirdre Tynan is an award-winning journalist who enjoys bringing the best in news reporting to Spain’s largest English-language newspaper, Euro Weekly News. She has previously worked at The Mirror, Ireland on Sunday and for news agencies, media outlets and international organisations in America, Europe and Asia. A huge fan of British politics and newspapers, Deirdre is equally fascinated by the political scene in Madrid and Sevilla. She moved to Spain in 2018 and is based in Jaen.


Please enter your comment!
Please enter your name here